658 research outputs found

    Can spaceborne synthetic aperture radar be useful for the mapping of ionospheric disturbances in the Arctic Region?

    Get PDF
    In this work we study the potential of C-band SAR images to map ionosphere disturbances in the Arctic region. This region is a unique region for ionosphere studies due to the characteristics of the geomagnetic field. In particular, we focus on the SAR interferometry technique as means to measure the temporal variation of propagation delay in correspondence of ionosphere disturbances. This technique provides maps of propagation delay differences between the acquisition dates of the two coherent SAR images needed to estimate the propagation delay over the study area. The high spatial resolution of C-band SAR images, in the order of 25 meters could contribute to the study of spatial distribution of ionosphere disturbances. Digisondes, VLF/ELF receivers and the EISCAT radars in the available in the Arctic region provide the time of ionosphere disturbances due to the solar activity, monitored by the ACE satellite. This allows to select the SAR images to process to map the ionosphere disturbances. The typical spatial coverage and acquisition times of Sentinel-1 images over the Arctic region are reported. A numerical analysis is carried out to estimate the expected ionosphere propagation delay in Sentinel-1 interferograms and so the potential of SAR interferometry to map the effects of ionosphere disturbances

    InSAR Meteorology: High-Resolution Geodetic Data Can Increase Atmospheric Predictability

    Get PDF
    AbstractThe present study assesses the added value of high‐resolution maps of precipitable water vapor, computed from synthetic aperture radar interferograms , in short‐range atmospheric predictability. A large set of images, in different weather conditions, produced by Sentinel‐1A in a very well monitored region near the Appalachian Mountains, are assimilated by the Weather Research and Forecast (WRF) model. Results covering more than 2 years of operation indicate a consistent improvement of the water vapor predictability up to a range comparable with the transit time of the air mass in the synthetic aperture radar interferograms footprint, an overall improvement in the forecast of different precipitation events, and better representation of the spatial distribution of precipitation. This result highlights the significant potential for increasing short‐range atmospheric predictability from improved high‐resolution precipitable water vapor initial data, which can be obtained from new high‐resolution all‐weather microwave sensors

    On the characterization of VLF radio signal propagation in atmosphere in quite solar conditions

    Get PDF
    In this work we use Very Low Frequency (VLF) radio signals, having a frequency in the bands 20-80 kHz, to study the VLF signal propagation in the atmosphere quite undisturbed conditions by selecting the signals recorded during night. As a good approximation, we can model the propagation of VLF radio signals as characterized by a ground-wave and a sky wave propagation mode. The first one generates a radio signal that propagates in the channel ground-troposphere, while the second one generates a signal which propagates using the lower ionosphere as a reflector. The VLF receivers of the INFREP (European Network of Electromagnetic Radiation) network are used. These receivers have been installed since 2009 mainly in southern and central Europe and currently the INFREP network consists of 9 receivers. A 1-minute sampling interval is used to record the amplitude of VLF signals. Long time-series of VLF signals propagating during night are extracted from recorded signals to study possible seasonal effects due to temporal variations in the physical properties of troposphere. A graph theory approach is used to investigate the spatial correlation of the aforementioned effects at different receivers. A multivariate analysis is also applied to identify common temporal changes observed at VLF receivers

    Variations revealed by INFREP Radio Network in correspondence of six earthquakes with MW greater than 5.0 occurred in the Balkan Peninsula and Adriatic Sea on 26 and 27 November, 2019

    Get PDF
    In this work we analyse variations in VLF/LF radio signal amplitudes recorded by the INFREP network in the period 16 November – 6 December, 2019 characterized by very intensive seismic activities in the Balkan peninsula, Crete, and Adriatic, Aegean and Black seas. Namely, 38 earthquakes with magnitude greater than 4.0 occurred in this area during the noticed period; the most intensive of them occurred on 26 and 27 November: three events in Albania (Mw= 6.4, 5.3, 5.1), one in Crete (Mw= 6), one in Bosnia and Herzegovina (Mw= 5.4) and two in Adriatic sea (Mw= 5.4, 5.3). We study both long- and short- term variations that are already recorded in earlier studies. The long-term variations relate to changes in the amplitude intensities in periods of several days and their existence is shown in many previous studies. The recent analyses also indicate short-term variations in signal amplitude noises started about several tents of minutes before the earthquake (Nina et al. 2020). In this work, we analyse different areas using INFREP network, which allow us to study local changes in the atmosphere. In order to examine possible precursors we considered longer time started and ended 10 days before and after the most intensive of the considered earthquakes, respectively

    The Void Size Function in Dynamical Dark Energy Cosmologies

    Get PDF
    We test a theoretical description of the void size distribution function against direct estimates from halo catalogues of the DEMNUni suite of large cosmological simulations. Besides standard Λ\LambdaCDM, we consider deviations of the dark energy equation of state from w=1w=-1, corresponding to four combinations in the popular Chevallier-Polarski-Linder parametrisation: w0=0.9;1.1w_0=-0.9;-1.1, wa=0.3;0.3w_a=-0.3;0.3. The theoretical void size function model, relying on the Sheth & van de Weygaert double barrier excursion set formalism, provides an accurate description of the simulation measurements for the different dark energy models considered, within the statistical errors. The model remains accurate for any value of the threshold for void formation δv\delta_\mathrm{v}. Its robust consistency with simulations demonstrates that the theoretical void size function can be applied to real data as a sensitive tool to constrain dark energy.Comment: 15 pages, 5 figures and 2 table

    On the estimation of temporal changes of snow water equivalent by spaceborne SAR interferometry : a new application for the Sentinel-1 mission

    Get PDF
    In this work we present a methodology for the mapping of Snow Water Equivalent (SWE) temporal variations based on the Synthetic Aperture Radar (SAR) Interferometry technique and Sentinel-1 data. The shift in the interferometric phase caused by the refraction of the microwave signal penetrating the snow layer is isolated and exploited to generate maps of temporal variation of SWE from coherent SAR interferograms. The main advantage of the proposed methodology with respect to those based on the inversion of microwave SAR backscattering models is its simplicity and the reduced number of required in-situ SWE measurements. The maps, updated up to every 6 days, can attain a spatial resolution up to 20 m with sub-centimetre ASWE measurement accuracy in any weather and sun illumination condition. We present results obtained using the proposed methodology over a study area in Finland. These results are compared with in-situ measurements of ASWE, showing a reasonable match with a mean accuracy of about 6 mm.Peer reviewe

    Sentinel-1 SAR interferometry for agriculture: description of an experiment in Oryol, Russia

    Get PDF
    In this work we describe an experiment to be carried out in the basin of Suhaya Orlitsa river (Oryol region, central part of European Russia) to compare in-situ measurements of soil moisture with estimates obtained using Synthetic Aperture Radar (SAR) interferometry. The Sentinel-1 mission of the European Space Agency (ESA), acquiring C-band SAR images regularly over all Earth regions since 2014 with a mean revisiting time of 6 days, is used. In-situ measurements of soil moisture are planned in a time interval of 3 hours in coincidence of each Sentinel-1 passage, using a temporal sampling of 15 minutes. Test measurements are planned at the end of the month of April, when the soil accumulates water. The aim of the experiment is to demonstrate the feasibility of using Sentinel-1 images to densify the network of in-situ measurements of soil moisture on the territory of Russia. The application of SAR interferometry is investigated as it requires less in-situ measurements than methods based on the use of radar cross-section and the inversion of models of electromagnetic scattering from natural surfaces. Examples of interferometric coherence and phase images obtained by processing Sentinel-1 images acquired on 20th September 2019 and 2nd October 2019 over the study area are shown
    corecore